Recommended Posts

Blind mice have been able to see once more in a laboratory exploit that marks a further boost for the fast-moving field of retinal therapy, according to a study published on Sunday.

Scientists in Britain used stem cells -- early-stage, highly versatile cells -- taken from mice embryos, and cultured them in a lab dish so that they differentiated into immature photoreceptors, the light-catching cells in the retina.

Around 200,000 of these cells were then injected into the mice's retinas, some of which integrated smoothly with local cells to restore sight.

The rodents were put through their paces in a water maze and examined by optometry to confirm that they responded to light.

Embryonic stem cells "could in future provide a potentially unlimited supply of health photoreceptors for retinal transplantations to treat blindness in humans," Britain's Medical Research Council (MRC) said in a press release.

Photoreceptor loss lies behind degenerative eye diseases such as retinitis pigmentosa and age-related macular degeneration, also called AMD.

Stem cells have triggered a huge interest and investment on the back of hopes that they can become replacement tissue, grown in a lab dish, for cells damaged by disease or accident.

But the exciting field has to overcome big obstacles.

One is the ability to coax these immature cells into safely becoming the specialized cells that are needed, rather than turn cancerous.

This is where the new work marks a gain, according to lead researcher Robin Ali at the University College London Institute of Ophthalmology and Moorfields Eye Hospital.

His team previously found that sight could be restored in blind mice by transplanting immature photoreceptors called rod cells that were taken from the retinas of healthy rodents.

The latest research takes things further because the transplanted material comprises all the different nerve cells needed for sight -- and they were not taken from other animals.

Instead, they were grown in a lab and differentiated into the right cells thanks to a new technique, pioneered in Japan, that replicates the shape of the retina.

more

Link to comment
Share on other sites

There have actually been human tests of this using earlier methods. It'll be very useful for people with diabetic retinopathy, retinitis pigmentosa etc.

Link to comment
Share on other sites

This topic is now closed to further replies.