Guide to smartphone hardware (1/7): Processors

Samsung’s Exynos SoCs

Samsung’s Exynos range of SoCs is quite small, but fits the middle ground between a bare essentials SoC (the TI OMAP) and a fully-fledged system (the Snapdragon). When I was looking through the specifications of each SoC I was actually surprised at some of the inclusions which, for the time they were released, were ahead of the competition.

Generally speaking you will only find Samsung’s Exynos chipsets inside Samsung’s-own high-end smartphones and tablets, with one exception being the Chinese Meizu range of products. Even though Samsung do produce their own SoC, they don’t use it in all their products, often falling back to Qualcomm’s range where the Exynos chips do not meet requirements for things such as LTE and cost effectiveness.

The first of Samsung’s Exynos SoCs was known originally as the Samsung Hummingbird and resided in the original Samsung Galaxy S; it’s now known as the Samsung Exynos 3310. The Exynos 3310 was produced on a 45nm process and contains a single ARM Cortex-A8 processing core at 1.0 GHz along with a PowerVR SGX540 graphics accelerator which was very powerful for the time.

To my great surprise the original Exynos 3310 supports full 1080p encode and decode, which is something that the single-core SoCs from other companies do not support (usually maxing out at 720p). It doesn’t appear like the encoding functionality is enabled on devices like the Samsung Galaxy S and Nexus S, but according to the specifications sheet it does actually support it.

The Exynos 4210 is the second generation of the Exynos line that sees a bump to a dual-core ARM Cortex-A9 design paired with a very powerful ARM Mali-400 MP4 GPU. The SoC was originally designed to run at 1.0 GHz but was first seen at 1.2 GHz in the Samsung Galaxy S II and then 1.4 GHz in the Galaxy Note. You’ll also see the Exynos 4210 in Samsung’s Galaxy Tab 7.7.

A chip block diagram of the Exynos 4210

Not only does the dual-core Exynos 4210 improve greatly on the speed of the 3310, it also starts to include other features in the SoC. You’ll see full embedded GPS capabilities in the 4210, which is relied on by an external chip in the TI OMAP range and the Exynos 3310, and a much better modem interface that makes it easier to incorporate different radios into the system.

Like the Exynos 3310 you get full 1080p encode and decode with HDMI out in the 4210, along with USB Host capabilities. NEON code is also supported as with the TI OMAP and Snapdragon, but not NVIDIA’s Tegra 2 range. The Exynos range has no support for 3D displays/recording/decoding as far as I can tell, and there doesn’t appear to be a dedicated media accelerator so media must either be decoded fully on the GPU or CPU. Either way, it doesn’t seem to affect performance as when I used the Galaxy Note it had a huge range of supported codecs that played fine.

An actual Exynos processor as seen in the Samsung Galaxy S 4G (highlighted in red)

Out of the other SoCs, strangely the Exynos 4210 has the lowest maximum display resolution: 1280x800 (WXGA) vs. the Snapdragon S3’s 1440x900 (WSXGA) and the TI OMAP 4’s 1920x1200 (WUXGA). However, it can output 1080p over HDMI so it’s surprising that it can’t support 1080p interfaced displays.

The future for the Exynos chipset does look impressive though. Samsung is currently sampling the Exynos 5250, which is a 2.0 GHz dual-core ARM Cortex-A15 SoC with improved Mali graphics, stereoscopic 3D support, 2560x1600 (WQXGA) display support and much improved camera capabilities.

Benchmarks for the current Exynos 4210 SoC can be found in our Galaxy Note review which you can read here.

Previous Story
Backup of The Pirate Bay? A bunch of Megabytes
Next Story
Microsoft's India Store has been compromised, passwords saved as plain text