CPU Optimizations


Recommended Posts

  On 22/04/2013 at 12:25, soumyasch said:

Why do you get different results in your Sun system? Which one is flawed?

I honestly have no idea why the result is different, but the output from my Intel system seems to fit much better with the other results posted here so I assume the SPARC result is the wrong one. You could probably check the results against the verified value of Pi (I'm sure that's somewhere online) to see which is actually right. The evidence is definitely against the SPARC box though: it calculated Pi to more than 5000 decimals and isn't consistent with our Intel results (which calculated Pi to exactly 5000 decimals like it was supposed to).

It wouldn't be unprecedented for the FPU to introduce some small percent error in an effort to speed up floating point calculations, which seems ludicrous based on the performance but is a possibility nonetheless. That seems like the most likely reason for the discrepancy. See the well-known Intel Pentium FDIV bug for a real world example of such a flaw.

  On 22/04/2013 at 12:30, ChuckFinley said:

Yeah why does the SPARC get a different result and also take over 5mins to do it.

I have two theories on why it takes so long. The first is that it is doing floating point emulation in software rather than using the hardware FPU. The second is that Linux 3.2 is not well optimized for the FPU in that machine. The system response time is better than most of the Intel system response times posted thus far, which acceptably fits either theory because the kernel tries to avoid doing floating point calculations as much as possible. (Doing floating point operations in the kernel is difficult and expensive.) The latter theory seems more likely because the performance of that machine is much too good in general for it to be using floating point emulation all the time.

In case it helps, here is the head of /proc/cpuinfo on that system:


cpu : UltraSparc T1 (Niagara)
fpu : UltraSparc T1 integrated FPU
pmu : niagara
prom : OBP 4.30.4.d 2011/07/06 14:29
type : sun4v
ncpus probed : 32
ncpus active : 32
D$ parity tl1 : 0
I$ parity tl1 : 0
cpucaps : flush,stbar,swap,muldiv,v9,blkinit,mul32,div32,v8plus,ASIBlkInit
[/CODE]

  On 22/04/2013 at 12:25, soumyasch said:

Why do you get different results in your Sun system? Which one is flawed?

Probably because one of them uses the x87 fpu and the other uses a proper implementation of IEEE754. x87 uses registers wider than standard floating-point precision, which can lead to more exact results (most stupid idea Intel ever had), however this is unpredictable and unreproducible on other floating point units, or even on other x87s running the same code compiled differently, or if the fpu itself is configured differently on different runs. Or perhaps if the phase of the moon differs. With x87 you never really know what result you're getting. This makes it incredibly hard (when not outright impossible) to make portable floating-point based simulations, unless you can avoid x87 altogether (which is no trivial task in itself).

Reproducitibility of floating point calculations is a hairy topic, and it's largely because of x87.

  • Like 2
  On 22/04/2013 at 16:23, n_K said:

It's most probably different on the SPARC because it's a different architecture, can't really compare architectures, bit like the raspberry pi and an old gateway pc.

Floating-point math is a standard (IEEE754) and in theory all implementations should give the same results. In practice it's really freakin' hard to make arbitrary C/C++ floating point code be coherent across different platforms, compilers, and even sometimes the same compiler on the same machine. The real world isn't a nice place. :pinch:

Here's a few for you ranking from highest performance to lowest, yet the scores are the opposite for this test, haha.

real 0m36.797s

user 0m36.754s

sys 0m0.006s

RHEL 6.3, 2.6.32-279.el6 kernel

8x Xeon E7 8850

-----------

real 0m32.795s

user 0m26.424s

sys 0m0.002s

RHEL 5.9, 2.6.18-348.el5 kernel

4x Xeon E5 2670

-----------

real 0m19.752s

user 0m19.720s

sys 0m0.004s

Linux Mint 14, 3.7.0-7-generic kernel

1x Core i3-3225

OK So I am going to write a simple guide to compile the mainstream kernel with CPU Optimizations. I will post downloads for mu i7 64bit kernel for you to install. Thanks for the help guys keep them comming, Maybe we could have a Neowin Score chart to see who can get the fastest

  On 22/04/2013 at 16:31, Asik said:

Probably because one of them uses the x87 fpu and the other uses a proper implementation of IEEE734. x87 uses registers wider than standard floating-point precision, which can lead to more exact results (most stupid idea Intel ever had), however this is unpredictable and unreproducible on other floating point units, or even on other x87s running the same code compiled differently, or if the fpu itself is configured differently on different runs. Or perhaps if the phase of the moon differs. With x87 you never really know what result you're getting. This makes it incredibly hard (when not outright impossible) to make portable floating-point based simulations, unless you can avoid x87 altogether (which is no trivial task in itself).

Reproducitibility of floating point calculations is a hairy topic, and it's largely because of x87.

Thanks for the clarification. I had no idea that floating point was done differently on Intel systems than other architectures. Do AMD processors use x87 too? I don't think anyone has posted a result from an AMD system yet. Unfortunately I don't have one online for testing at the moment.

If I'm understanding you right, the SPARC result is more accurate? Why is it more than 5000 places past the decimal point when the Intel results are exactly the 5000 requested? Too bad Rablet didn't post the number produced by the Raspberry Pi. I might have to try it on my Raspberry Pi later so I can compare its result to the SPARC result.

  On 22/04/2013 at 19:20, ChuckFinley said:

Interesting topic guys! All I have is Intel Machines at the minute. Dont think anyones posted an AMD offering, Anyway my guide is posted. Am compiling again now will post back later if my results have improved.

Okay, here's an AMD:

real 34.882s

user 34.851s

sys 0.019s

RHEL 6.1, 2.6.32-131.0.13.el6 kernel

2x Opteron 2220

Edit: Update with full output:

  Quote
[root@dhcp-*-**-***-** Desktop]# time echo "scale=5000; a(1)*4" | bc -l

3.141592653589793238462643383279502884197169399375105820974944592307\

81640628620899862803482534211706798214808651328230664709384460955058\

22317253594081284811174502841027019385211055596446229489549303819644\

28810975665933446128475648233786783165271201909145648566923460348610\

45432664821339360726024914127372458700660631558817488152092096282925\

40917153643678925903600113305305488204665213841469519415116094330572\

70365759591953092186117381932611793105118548074462379962749567351885\

75272489122793818301194912983367336244065664308602139494639522473719\

07021798609437027705392171762931767523846748184676694051320005681271\

45263560827785771342757789609173637178721468440901224953430146549585\

37105079227968925892354201995611212902196086403441815981362977477130\

99605187072113499999983729780499510597317328160963185950244594553469\

08302642522308253344685035261931188171010003137838752886587533208381\

42061717766914730359825349042875546873115956286388235378759375195778\

18577805321712268066130019278766111959092164201989380952572010654858\

63278865936153381827968230301952035301852968995773622599413891249721\

77528347913151557485724245415069595082953311686172785588907509838175\

46374649393192550604009277016711390098488240128583616035637076601047\

10181942955596198946767837449448255379774726847104047534646208046684\

25906949129331367702898915210475216205696602405803815019351125338243\

00355876402474964732639141992726042699227967823547816360093417216412\

19924586315030286182974555706749838505494588586926995690927210797509\

30295532116534498720275596023648066549911988183479775356636980742654\

25278625518184175746728909777727938000816470600161452491921732172147\

72350141441973568548161361157352552133475741849468438523323907394143\

33454776241686251898356948556209921922218427255025425688767179049460\

16534668049886272327917860857843838279679766814541009538837863609506\

80064225125205117392984896084128488626945604241965285022210661186306\

74427862203919494504712371378696095636437191728746776465757396241389\

08658326459958133904780275900994657640789512694683983525957098258226\

20522489407726719478268482601476990902640136394437455305068203496252\

45174939965143142980919065925093722169646151570985838741059788595977\

29754989301617539284681382686838689427741559918559252459539594310499\

72524680845987273644695848653836736222626099124608051243884390451244\

13654976278079771569143599770012961608944169486855584840635342207222\

58284886481584560285060168427394522674676788952521385225499546667278\

23986456596116354886230577456498035593634568174324112515076069479451\

09659609402522887971089314566913686722874894056010150330861792868092\

08747609178249385890097149096759852613655497818931297848216829989487\

22658804857564014270477555132379641451523746234364542858444795265867\

82105114135473573952311342716610213596953623144295248493718711014576\

54035902799344037420073105785390621983874478084784896833214457138687\

51943506430218453191048481005370614680674919278191197939952061419663\

42875444064374512371819217999839101591956181467514269123974894090718\

64942319615679452080951465502252316038819301420937621378559566389377\

87083039069792077346722182562599661501421503068038447734549202605414\

66592520149744285073251866600213243408819071048633173464965145390579\

62685610055081066587969981635747363840525714591028970641401109712062\

80439039759515677157700420337869936007230558763176359421873125147120\

53292819182618612586732157919841484882916447060957527069572209175671\

16722910981690915280173506712748583222871835209353965725121083579151\

36988209144421006751033467110314126711136990865851639831501970165151\

16851714376576183515565088490998985998238734552833163550764791853589\

32261854896321329330898570642046752590709154814165498594616371802709\

81994309924488957571282890592323326097299712084433573265489382391193\

25974636673058360414281388303203824903758985243744170291327656180937\

73444030707469211201913020330380197621101100449293215160842444859637\

66983895228684783123552658213144957685726243344189303968642624341077\

32269780280731891544110104468232527162010526522721116603966655730925\

47110557853763466820653109896526918620564769312570586356620185581007\

29360659876486117910453348850346113657686753249441668039626579787718\

55608455296541266540853061434443185867697514566140680070023787765913\

44017127494704205622305389945613140711270004078547332699390814546646\

45880797270826683063432858785698305235808933065757406795457163775254\

20211495576158140025012622859413021647155097925923099079654737612551\

76567513575178296664547791745011299614890304639947132962107340437518\

95735961458901938971311179042978285647503203198691514028708085990480\

10941214722131794764777262241425485454033215718530614228813758504306\

33217518297986622371721591607716692547487389866549494501146540628433\

66393790039769265672146385306736096571209180763832716641627488880078\

69256029022847210403172118608204190004229661711963779213375751149595\

01566049631862947265473642523081770367515906735023507283540567040386\

74351362222477158915049530984448933309634087807693259939780541934144\

73774418426312986080998886874132604720

real 0m34.882s

user 0m34.851s

sys 0m0.019s

Okay, I commandeered another system for a minute to get an AMD result.


3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303819644\
28810975665933446128475648233786783165271201909145648566923460348610\
45432664821339360726024914127372458700660631558817488152092096282925\
40917153643678925903600113305305488204665213841469519415116094330572\
70365759591953092186117381932611793105118548074462379962749567351885\
75272489122793818301194912983367336244065664308602139494639522473719\
07021798609437027705392171762931767523846748184676694051320005681271\
45263560827785771342757789609173637178721468440901224953430146549585\
37105079227968925892354201995611212902196086403441815981362977477130\
99605187072113499999983729780499510597317328160963185950244594553469\
08302642522308253344685035261931188171010003137838752886587533208381\
42061717766914730359825349042875546873115956286388235378759375195778\
18577805321712268066130019278766111959092164201989380952572010654858\
63278865936153381827968230301952035301852968995773622599413891249721\
77528347913151557485724245415069595082953311686172785588907509838175\
46374649393192550604009277016711390098488240128583616035637076601047\
10181942955596198946767837449448255379774726847104047534646208046684\
25906949129331367702898915210475216205696602405803815019351125338243\
00355876402474964732639141992726042699227967823547816360093417216412\
19924586315030286182974555706749838505494588586926995690927210797509\
30295532116534498720275596023648066549911988183479775356636980742654\
25278625518184175746728909777727938000816470600161452491921732172147\
72350141441973568548161361157352552133475741849468438523323907394143\
33454776241686251898356948556209921922218427255025425688767179049460\
16534668049886272327917860857843838279679766814541009538837863609506\
80064225125205117392984896084128488626945604241965285022210661186306\
74427862203919494504712371378696095636437191728746776465757396241389\
08658326459958133904780275900994657640789512694683983525957098258226\
20522489407726719478268482601476990902640136394437455305068203496252\
45174939965143142980919065925093722169646151570985838741059788595977\
29754989301617539284681382686838689427741559918559252459539594310499\
72524680845987273644695848653836736222626099124608051243884390451244\
13654976278079771569143599770012961608944169486855584840635342207222\
58284886481584560285060168427394522674676788952521385225499546667278\
23986456596116354886230577456498035593634568174324112515076069479451\
09659609402522887971089314566913686722874894056010150330861792868092\
08747609178249385890097149096759852613655497818931297848216829989487\
22658804857564014270477555132379641451523746234364542858444795265867\
82105114135473573952311342716610213596953623144295248493718711014576\
54035902799344037420073105785390621983874478084784896833214457138687\
51943506430218453191048481005370614680674919278191197939952061419663\
42875444064374512371819217999839101591956181467514269123974894090718\
64942319615679452080951465502252316038819301420937621378559566389377\
87083039069792077346722182562599661501421503068038447734549202605414\
66592520149744285073251866600213243408819071048633173464965145390579\
62685610055081066587969981635747363840525714591028970641401109712062\
80439039759515677157700420337869936007230558763176359421873125147120\
53292819182618612586732157919841484882916447060957527069572209175671\
16722910981690915280173506712748583222871835209353965725121083579151\
36988209144421006751033467110314126711136990865851639831501970165151\
16851714376576183515565088490998985998238734552833163550764791853589\
32261854896321329330898570642046752590709154814165498594616371802709\
81994309924488957571282890592323326097299712084433573265489382391193\
25974636673058360414281388303203824903758985243744170291327656180937\
73444030707469211201913020330380197621101100449293215160842444859637\
66983895228684783123552658213144957685726243344189303968642624341077\
32269780280731891544110104468232527162010526522721116603966655730925\
47110557853763466820653109896526918620564769312570586356620185581007\
29360659876486117910453348850346113657686753249441668039626579787718\
55608455296541266540853061434443185867697514566140680070023787765913\
44017127494704205622305389945613140711270004078547332699390814546646\
45880797270826683063432858785698305235808933065757406795457163775254\
20211495576158140025012622859413021647155097925923099079654737612551\
76567513575178296664547791745011299614890304639947132962107340437518\
95735961458901938971311179042978285647503203198691514028708085990480\
10941214722131794764777262241425485454033215718530614228813758504306\
33217518297986622371721591607716692547487389866549494501146540628433\
66393790039769265672146385306736096571209180763832716641627488880078\
69256029022847210403172118608204190004229661711963779213375751149595\
01566049631862947265473642523081770367515906735023507283540567040386\
74351362222477158915049530984448933309634087807693259939780541934144\
73774418426312986080998886874132604720

real 0m48.062s
user 0m48.022s
sys 0m0.006s
[/CODE]

[b]Hardware[/b]

  • Quad-Core AMD Opteron Processor 8347 HE clocked at 1900.077 MHz
  • 4 GB of RAM

[b]Kernel[/b]

  • 2.6.18-348.1.1.el5.x86_64 (SMP)

  On 22/04/2013 at 19:30, ChuckFinley said:

Yeah the Intel ones and the AMD Results differ. Interesting.

More importantly, they both differ from the SPARC result. Apparently all x86 systems use the inconsistent x87 FPU, which I guess justifies the results somewhat.

Now this is strange. I have compiled the latest Kernel with the optimizations in my guide and I now get this result on an Intel i7. I could have swore it ended differently on rc7 and previous Kernels.

Edit:It must entirely be down to the Optimizations that are on the Kernel but that shouldnt be right :-s


ubuntu@ubuntui7:~$ time echo "scale=5000; a(1)*4" | bc -l
3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303819644\
28810975665933446128475648233786783165271201909145648566923460348610\
45432664821339360726024914127372458700660631558817488152092096282925\
40917153643678925903600113305305488204665213841469519415116094330572\
70365759591953092186117381932611793105118548074462379962749567351885\
75272489122793818301194912983367336244065664308602139494639522473719\
07021798609437027705392171762931767523846748184676694051320005681271\
45263560827785771342757789609173637178721468440901224953430146549585\
37105079227968925892354201995611212902196086403441815981362977477130\
99605187072113499999983729780499510597317328160963185950244594553469\
08302642522308253344685035261931188171010003137838752886587533208381\
42061717766914730359825349042875546873115956286388235378759375195778\
18577805321712268066130019278766111959092164201989380952572010654858\
63278865936153381827968230301952035301852968995773622599413891249721\
77528347913151557485724245415069595082953311686172785588907509838175\
46374649393192550604009277016711390098488240128583616035637076601047\
10181942955596198946767837449448255379774726847104047534646208046684\
25906949129331367702898915210475216205696602405803815019351125338243\
00355876402474964732639141992726042699227967823547816360093417216412\
19924586315030286182974555706749838505494588586926995690927210797509\
30295532116534498720275596023648066549911988183479775356636980742654\
25278625518184175746728909777727938000816470600161452491921732172147\
72350141441973568548161361157352552133475741849468438523323907394143\
33454776241686251898356948556209921922218427255025425688767179049460\
16534668049886272327917860857843838279679766814541009538837863609506\
80064225125205117392984896084128488626945604241965285022210661186306\
74427862203919494504712371378696095636437191728746776465757396241389\
08658326459958133904780275900994657640789512694683983525957098258226\
20522489407726719478268482601476990902640136394437455305068203496252\
45174939965143142980919065925093722169646151570985838741059788595977\
29754989301617539284681382686838689427741559918559252459539594310499\
72524680845987273644695848653836736222626099124608051243884390451244\
13654976278079771569143599770012961608944169486855584840635342207222\
58284886481584560285060168427394522674676788952521385225499546667278\
23986456596116354886230577456498035593634568174324112515076069479451\
09659609402522887971089314566913686722874894056010150330861792868092\
08747609178249385890097149096759852613655497818931297848216829989487\
22658804857564014270477555132379641451523746234364542858444795265867\
82105114135473573952311342716610213596953623144295248493718711014576\
54035902799344037420073105785390621983874478084784896833214457138687\
51943506430218453191048481005370614680674919278191197939952061419663\
42875444064374512371819217999839101591956181467514269123974894090718\
64942319615679452080951465502252316038819301420937621378559566389377\
87083039069792077346722182562599661501421503068038447734549202605414\
66592520149744285073251866600213243408819071048633173464965145390579\
62685610055081066587969981635747363840525714591028970641401109712062\
80439039759515677157700420337869936007230558763176359421873125147120\
53292819182618612586732157919841484882916447060957527069572209175671\
16722910981690915280173506712748583222871835209353965725121083579151\
36988209144421006751033467110314126711136990865851639831501970165151\
16851714376576183515565088490998985998238734552833163550764791853589\
32261854896321329330898570642046752590709154814165498594616371802709\
81994309924488957571282890592323326097299712084433573265489382391193\
25974636673058360414281388303203824903758985243744170291327656180937\
73444030707469211201913020330380197621101100449293215160842444859637\
66983895228684783123552658213144957685726243344189303968642624341077\
32269780280731891544110104468232527162010526522721116603966655730925\
47110557853763466820653109896526918620564769312570586356620185581007\
29360659876486117910453348850346113657686753249441668039626579787718\
55608455296541266540853061434443185867697514566140680070023787765913\
44017127494704205622305389945613140711270004078547332699390814546646\
45880797270826683063432858785698305235808933065757406795457163775254\
20211495576158140025012622859413021647155097925923099079654737612551\
76567513575178296664547791745011299614890304639947132962107340437518\
95735961458901938971311179042978285647503203198691514028708085990480\
10941214722131794764777262241425485454033215718530614228813758504306\
33217518297986622371721591607716692547487389866549494501146540628433\
66393790039769265672146385306736096571209180763832716641627488880078\
69256029022847210403172118608204190004229661711963779213375751149595\
01566049631862947265473642523081770367515906735023507283540567040386\
74351362222477158915049530984448933309634087807693259939780541934144\
73774418426312986080998886874132604720
real 0m21.263s
user 0m21.256s
sys 0m0.004s
[/CODE]

  On 22/04/2013 at 19:17, xorangekiller said:

Thanks for the clarification. I had no idea that floating point was done differently on Intel systems than other architectures. Do AMD processors use x87 too? I don't think anyone has posted a result from an AMD system yet. Unfortunately I don't have one online for testing at the moment.

If I'm understanding you right, the SPARC result is more accurate? Why is it more than 5000 places past the decimal point when the Intel results are exactly the 5000 requested? Too bad Rablet didn't post the number produced by the Raspberry Pi. I might have to try it on my Raspberry Pi later so I can compare its result to the SPARC result.

Intel and AMD implement IEEE754 in two different instruction sets, x87 and SSE. Both were originally designed by Intel; SSE is consistent and x87 isn't.

There could be other causes behind the inconsistency seen here. Floating-point arithmetic does not respect certain mathematic properties like associativity and distributivity, so building using different compilers, or even the same compiler with different flags, can lead to different re-ordering of instructions and thus different result, even on a strictly comformant ieee754 implementation. It's also possible that the software implementation used on SPARC is buggy, I don't know.

Getting portable and reproducible results with floating-point code is very difficult and it appears this particular program fails quite miserably at it; perhaps it doesn't even try to. Avoiding x87 is a step in the right direction, but not a guarantee in itself of consistent results.

  • Like 2

This looks like an interesting post, thought I would have a play.

Base hardware is AMD FX-8350 Eight-Core Processor, 32GB DDR3@1866, M/B is MSI 990XA-GD55 (bios 23.2).

This is my server system that runs Windows Server 2012 Standard.

I am a total noob when it comes to Linux, so I just grabbed Xubuntu 12.10 and installed into VMware workstation 9.0.2.

This is what i got:

real 1m13.242s

user 1m13.229s

sys 0m0.028s

Bit of a miserable result I think.

I ran the test a few times and noticed that the CPU usage only peaks at 13% (in Xubuntu).

Would be a much better result if i could persaude it to use all the CPU capacity ;)

Tim


3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303819644\
28810975665933446128475648233786783165271201909145648566923460348610\
45432664821339360726024914127372458700660631558817488152092096282925\
40917153643678925903600113305305488204665213841469519415116094330572\
70365759591953092186117381932611793105118548074462379962749567351885\
75272489122793818301194912983367336244065664308602139494639522473719\
07021798609437027705392171762931767523846748184676694051320005681271\
45263560827785771342757789609173637178721468440901224953430146549585\
37105079227968925892354201995611212902196086403441815981362977477130\
99605187072113499999983729780499510597317328160963185950244594553469\
08302642522308253344685035261931188171010003137838752886587533208381\
42061717766914730359825349042875546873115956286388235378759375195778\
18577805321712268066130019278766111959092164201989380952572010654858\
63278865936153381827968230301952035301852968995773622599413891249721\
77528347913151557485724245415069595082953311686172785588907509838175\
46374649393192550604009277016711390098488240128583616035637076601047\
10181942955596198946767837449448255379774726847104047534646208046684\
25906949129331367702898915210475216205696602405803815019351125338243\
00355876402474964732639141992726042699227967823547816360093417216412\
19924586315030286182974555706749838505494588586926995690927210797509\
30295532116534498720275596023648066549911988183479775356636980742654\
25278625518184175746728909777727938000816470600161452491921732172147\
72350141441973568548161361157352552133475741849468438523323907394143\
33454776241686251898356948556209921922218427255025425688767179049460\
16534668049886272327917860857843838279679766814541009538837863609506\
80064225125205117392984896084128488626945604241965285022210661186306\
74427862203919494504712371378696095636437191728746776465757396241389\
08658326459958133904780275900994657640789512694683983525957098258226\
20522489407726719478268482601476990902640136394437455305068203496252\
45174939965143142980919065925093722169646151570985838741059788595977\
29754989301617539284681382686838689427741559918559252459539594310499\
72524680845987273644695848653836736222626099124608051243884390451244\
13654976278079771569143599770012961608944169486855584840635342207222\
58284886481584560285060168427394522674676788952521385225499546667278\
23986456596116354886230577456498035593634568174324112515076069479451\
09659609402522887971089314566913686722874894056010150330861792868092\
08747609178249385890097149096759852613655497818931297848216829989487\
22658804857564014270477555132379641451523746234364542858444795265867\
82105114135473573952311342716610213596953623144295248493718711014576\
54035902799344037420073105785390621983874478084784896833214457138687\
51943506430218453191048481005370614680674919278191197939952061419663\
42875444064374512371819217999839101591956181467514269123974894090718\
64942319615679452080951465502252316038819301420937621378559566389377\
87083039069792077346722182562599661501421503068038447734549202605414\
66592520149744285073251866600213243408819071048633173464965145390579\
62685610055081066587969981635747363840525714591028970641401109712062\
80439039759515677157700420337869936007230558763176359421873125147120\
53292819182618612586732157919841484882916447060957527069572209175671\
16722910981690915280173506712748583222871835209353965725121083579151\
36988209144421006751033467110314126711136990865851639831501970165151\
16851714376576183515565088490998985998238734552833163550764791853589\
32261854896321329330898570642046752590709154814165498594616371802709\
81994309924488957571282890592323326097299712084433573265489382391193\
25974636673058360414281388303203824903758985243744170291327656180937\
73444030707469211201913020330380197621101100449293215160842444859637\
66983895228684783123552658213144957685726243344189303968642624341077\
32269780280731891544110104468232527162010526522721116603966655730925\
47110557853763466820653109896526918620564769312570586356620185581007\
29360659876486117910453348850346113657686753249441668039626579787718\
55608455296541266540853061434443185867697514566140680070023787765913\
44017127494704205622305389945613140711270004078547332699390814546646\
45880797270826683063432858785698305235808933065757406795457163775254\
20211495576158140025012622859413021647155097925923099079654737612551\
76567513575178296664547791745011299614890304639947132962107340437518\
95735961458901938971311179042978285647503203198691514028708085990480\
10941214722131794764777262241425485454033215718530614228813758504306\
33217518297986622371721591607716692547487389866549494501146540628433\
66393790039769265672146385306736096571209180763832716641627488880078\
69256029022847210403172118608204190004229661711963779213375751149595\
01566049631862947265473642523081770367515906735023507283540567040386\
74351362222477158915049530984448933309634087807693259939780541934144\
73774418426312986080998886874132604720

real 4m49.467s
user 4m32.100s
sys 0m0.040s
[/CODE]

[b]Hardware[/b]

  • ARMv6-compatible processor rev 5 (v6l) clocked at 600 MHz
  • 421 MB of RAM

[b]Kernel[/b]

  • 2.6.35.14-CAI-test40-HK+ armv6l (PREEMPT)

BEHOLD THE POWER!

  Quote

3.141592653589793238462643383279502884197169399375105820974944592307\

81640628620899862803482534211706798214808651328230664709384460955058\

22317253594081284811174502841027019385211055596446229489549303819644\

28810975665933446128475648233786783165271201909145648566923460348610\

45432664821339360726024914127372458700660631558817488152092096282925\

40917153643678925903600113305305488204665213841469519415116094330572\

70365759591953092186117381932611793105118548074462379962749567351885\

75272489122793818301194912983367336244065664308602139494639522473719\

07021798609437027705392171762931767523846748184676694051320005681271\

45263560827785771342757789609173637178721468440901224953430146549585\

37105079227968925892354201995611212902196086403441815981362977477130\

99605187072113499999983729780499510597317328160963185950244594553469\

08302642522308253344685035261931188171010003137838752886587533208381\

42061717766914730359825349042875546873115956286388235378759375195778\

18577805321712268066130019278766111959092164201989380952572010654858\

63278865936153381827968230301952035301852968995773622599413891249721\

77528347913151557485724245415069595082953311686172785588907509838175\

46374649393192550604009277016711390098488240128583616035637076601047\

10181942955596198946767837449448255379774726847104047534646208046684\

25906949129331367702898915210475216205696602405803815019351125338243\

00355876402474964732639141992726042699227967823547816360093417216412\

19924586315030286182974555706749838505494588586926995690927210797509\

30295532116534498720275596023648066549911988183479775356636980742654\

25278625518184175746728909777727938000816470600161452491921732172147\

72350141441973568548161361157352552133475741849468438523323907394143\

33454776241686251898356948556209921922218427255025425688767179049460\

16534668049886272327917860857843838279679766814541009538837863609506\

80064225125205117392984896084128488626945604241965285022210661186306\

74427862203919494504712371378696095636437191728746776465757396241389\

08658326459958133904780275900994657640789512694683983525957098258226\

20522489407726719478268482601476990902640136394437455305068203496252\

45174939965143142980919065925093722169646151570985838741059788595977\

29754989301617539284681382686838689427741559918559252459539594310499\

72524680845987273644695848653836736222626099124608051243884390451244\

13654976278079771569143599770012961608944169486855584840635342207222\

58284886481584560285060168427394522674676788952521385225499546667278\

23986456596116354886230577456498035593634568174324112515076069479451\

09659609402522887971089314566913686722874894056010150330861792868092\

08747609178249385890097149096759852613655497818931297848216829989487\

22658804857564014270477555132379641451523746234364542858444795265867\

82105114135473573952311342716610213596953623144295248493718711014576\

54035902799344037420073105785390621983874478084784896833214457138687\

51943506430218453191048481005370614680674919278191197939952061419663\

42875444064374512371819217999839101591956181467514269123974894090718\

64942319615679452080951465502252316038819301420937621378559566389377\

87083039069792077346722182562599661501421503068038447734549202605414\

66592520149744285073251866600213243408819071048633173464965145390579\

62685610055081066587969981635747363840525714591028970641401109712062\

80439039759515677157700420337869936007230558763176359421873125147120\

53292819182618612586732157919841484882916447060957527069572209175671\

16722910981690915280173506712748583222871835209353965725121083579151\

36988209144421006751033467110314126711136990865851639831501970165151\

16851714376576183515565088490998985998238734552833163550764791853589\

32261854896321329330898570642046752590709154814165498594616371802709\

81994309924488957571282890592323326097299712084433573265489382391193\

25974636673058360414281388303203824903758985243744170291327656180937\

73444030707469211201913020330380197621101100449293215160842444859637\

66983895228684783123552658213144957685726243344189303968642624341077\

32269780280731891544110104468232527162010526522721116603966655730925\

47110557853763466820653109896526918620564769312570586356620185581007\

29360659876486117910453348850346113657686753249441668039626579787718\

55608455296541266540853061434443185867697514566140680070023787765913\

44017127494704205622305389945613140711270004078547332699390814546646\

45880797270826683063432858785698305235808933065757406795457163775254\

20211495576158140025012622859413021647155097925923099079654737612551\

76567513575178296664547791745011299614890304639947132962107340437518\

95735961458901938971311179042978285647503203198691514028708085990480\

10941214722131794764777262241425485454033215718530614228813758504306\

33217518297986622371721591607716692547487389866549494501146540628433\

66393790039769265672146385306736096571209180763832716641627488880078\

69256029022847210403172118608204190004229661711963779213375751149595\

01566049631862947265473642523081770367515906735023507283540567040386\

74351362222477158915049530984448933309634087807693259939780541934144\

73774418426312986080998886874132604720

real 2m35.370s

user 2m34.142s

sys 0m0.104s

processor : 0

vendor_id : CentaurHauls

cpu family : 6

model : 10

model name : VIA Esther processor 1500MHz

stepping : 9

cpu MHz : 1500.062

cache size : 128 KB

Linux Burst 2.6.38-2-686

Debian

  On 22/04/2013 at 19:17, xorangekiller said:

Too bad Rablet didn't post the number produced by the Raspberry Pi.

Here you go:

3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303819644\
28810975665933446128475648233786783165271201909145648566923460348610\
45432664821339360726024914127372458700660631558817488152092096282925\
40917153643678925903600113305305488204665213841469519415116094330572\
70365759591953092186117381932611793105118548074462379962749567351885\
75272489122793818301194912983367336244065664308602139494639522473719\
07021798609437027705392171762931767523846748184676694051320005681271\
45263560827785771342757789609173637178721468440901224953430146549585\
37105079227968925892354201995611212902196086403441815981362977477130\
99605187072113499999983729780499510597317328160963185950244594553469\
08302642522308253344685035261931188171010003137838752886587533208381\
42061717766914730359825349042875546873115956286388235378759375195778\
18577805321712268066130019278766111959092164201989380952572010654858\
63278865936153381827968230301952035301852968995773622599413891249721\
77528347913151557485724245415069595082953311686172785588907509838175\
46374649393192550604009277016711390098488240128583616035637076601047\
10181942955596198946767837449448255379774726847104047534646208046684\
25906949129331367702898915210475216205696602405803815019351125338243\
00355876402474964732639141992726042699227967823547816360093417216412\
19924586315030286182974555706749838505494588586926995690927210797509\
30295532116534498720275596023648066549911988183479775356636980742654\
25278625518184175746728909777727938000816470600161452491921732172147\
72350141441973568548161361157352552133475741849468438523323907394143\
33454776241686251898356948556209921922218427255025425688767179049460\
16534668049886272327917860857843838279679766814541009538837863609506\
80064225125205117392984896084128488626945604241965285022210661186306\
74427862203919494504712371378696095636437191728746776465757396241389\
08658326459958133904780275900994657640789512694683983525957098258226\
20522489407726719478268482601476990902640136394437455305068203496252\
45174939965143142980919065925093722169646151570985838741059788595977\
29754989301617539284681382686838689427741559918559252459539594310499\
72524680845987273644695848653836736222626099124608051243884390451244\
13654976278079771569143599770012961608944169486855584840635342207222\
58284886481584560285060168427394522674676788952521385225499546667278\
23986456596116354886230577456498035593634568174324112515076069479451\
09659609402522887971089314566913686722874894056010150330861792868092\
08747609178249385890097149096759852613655497818931297848216829989487\
22658804857564014270477555132379641451523746234364542858444795265867\
82105114135473573952311342716610213596953623144295248493718711014576\
54035902799344037420073105785390621983874478084784896833214457138687\
51943506430218453191048481005370614680674919278191197939952061419663\
42875444064374512371819217999839101591956181467514269123974894090718\
64942319615679452080951465502252316038819301420937621378559566389377\
87083039069792077346722182562599661501421503068038447734549202605414\
66592520149744285073251866600213243408819071048633173464965145390579\
62685610055081066587969981635747363840525714591028970641401109712062\
80439039759515677157700420337869936007230558763176359421873125147120\
53292819182618612586732157919841484882916447060957527069572209175671\
16722910981690915280173506712748583222871835209353965725121083579151\
36988209144421006751033467110314126711136990865851639831501970165151\
16851714376576183515565088490998985998238734552833163550764791853589\
32261854896321329330898570642046752590709154814165498594616371802709\
81994309924488957571282890592323326097299712084433573265489382391193\
25974636673058360414281388303203824903758985243744170291327656180937\
73444030707469211201913020330380197621101100449293215160842444859637\
66983895228684783123552658213144957685726243344189303968642624341077\
32269780280731891544110104468232527162010526522721116603966655730925\
47110557853763466820653109896526918620564769312570586356620185581007\
29360659876486117910453348850346113657686753249441668039626579787718\
55608455296541266540853061434443185867697514566140680070023787765913\
44017127494704205622305389945613140711270004078547332699390814546646\
45880797270826683063432858785698305235808933065757406795457163775254\
20211495576158140025012622859413021647155097925923099079654737612551\
76567513575178296664547791745011299614890304639947132962107340437518\
95735961458901938971311179042978285647503203198691514028708085990480\
10941214722131794764777262241425485454033215718530614228813758504306\
33217518297986622371721591607716692547487389866549494501146540628433\
66393790039769265672146385306736096571209180763832716641627488880078\
69256029022847210403172118608204190004229661711963779213375751149595\
01566049631862947265473642523081770367515906735023507283540567040386\
74351362222477158915049530984448933309634087807693259939780541934144\
73774418426312986080998886874132604720

real	4m4.200s
user	4m3.590s
sys	 0m0.080s

CPU: ARMv6-compatible processor rev 7 (v6l)

Kernel: 3.2.27+

  On 23/04/2013 at 06:06, Rablet said:

CPU: ARMv6-compatible processor rev 7 (v6l)

Kernel: 3.2.27+

Thanks for the extra information! Are you running the armel Debian image or the armhf Raspbian variant? Your Raspberry Pi results are very similar to the result I posted of Debian running on an old smartphone. If you are running the armel version, then that comparison makes sense, because the processor and clock speed are almost identical between the two devices. If you are running the armhf variant, then it makes less sense, because the Raspberry Pi's hardware floating unit should be much faster than the software floating point emulation used to obtain my result.

This topic is now closed to further replies.
  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Posts

    • Back to School 2025 Nvidia gaming laptop deals list from Gigabyte, MSI and Acer by Sayan Sen The Back To School sales for 2025 are currently live with several laptops from MSI, Gigabyte, and Acer. These are gaming as well as studio laptops powered by Nvidia GPUs. A wide range of laptops ranging from $700 all the way up to $3000 are available. MSI has the most devices available while Gigabyte also has plenty in the list to choose from. Acer laptops and its trusty Predator machines are there too. Check the full list of discounts below: GIGABYTE - AORUS MASTER 16 Gaming Laptop - 240Hz 2560x1600 OLED - NVIDIA GeForce RTX 5090 - Intel Core Ultra 9 275HX - 2TB SSD with 32GB DDR5 RAM - Windows 11 Home AD (AORUS MASTER 16 BZHC6USE65SH) + Intel CPU Spring Bundle worth $159.99 for free: $3899.99 + $50 rebate => $3849.99 (Shipped and Sold by Newegg US) MSI - 18" GeForce RTX 5080 Laptop GPU - Intel Core Ultra 9 285HX - 64GB DDR5 6400MHz Memory - 4 TB SSD - Windows 11 Home - Gaming Laptop - 120 Hz Mini LED (Raider 18 HX AI A2XWIG-014US ) + Intel CPU Spring Bundle worth $159.99 for free: $3779.99 (Shipped and Sold by Newegg US) MSI Vector - 16" GeForce RTX 5080 Laptop GPU - Intel Core Ultra 9 275HX - 32GB Memory - 2 TB SSD - Windows 11 Pro - Gaming Laptop - 240 Hz (Vector 16 HX AI A2XWIG-058US ) + Intel CPU Spring Bundle worth $159.99 for free: $2799.99 (Shipped and Sold by Newegg US) MSI - 16" GeForce RTX 5070 Ti Laptop GPU - Intel Core Ultra 9 275HX - 32GB Memory - 2 TB SSD - Windows 11 Pro - Gaming Laptop - 240 Hz (Vector 16 HX AI A2XWHG-060US ) + Intel CPU Spring Bundle worth $159.99 for free: $2549.99 (Shipped and Sold by Newegg US) MSI Summit Pro 16 16" Touchscreen Laptop Intel Ultra 7 255H GeForce RTX 4050 32GB Memory 1 TB NVMe SSD Windows 11 Home Summit Pro 16 AI A2HVETG-074US: $1349.99 (Shipped and Sold by Newegg US) Aorus - 16" GeForce RTX 4060 Laptop GPU - Intel Core i7-13700HX - 16GB Memory - 1 TB PCIe SSD - Windows 11 Home 64-bit - Gaming Laptop - 240 Hz (16 BKF-73US654SH ): $1199.99 (Shipped and Sold by Newegg US) MSI Creator M14 14” 2.8K Display Creator Laptop: Intel Core i7-13620H, NVIDIA Geforce RTX 4050, 16GB DDR5, 1TB NVMe SSD, Cooler Boost, Win 11: Black A13VE-083US: $999.99 (Shipped and Sold by Amazon US) MSI Thin A15 B7V Thin A15 B7VE-214US 15.6" Gaming Notebook - Full HD - AMD Ryzen 7 7735HS - 16 GB - 512 GB SSD - Cosmos Gray - AMD Chip - 1920 x 1080 - Windows 11 - NVIDIA GeForce RTX 4050: $929.00 (Shipped and Sold by Newegg US) MSI Thin A15 B7U Thin A15 B7UC-473US 15.6" Gaming Notebook - Full HD - AMD Ryzen 5 7535HS - 16 GB - 512 GB SSD - Black - AMD Chip - 1920 x 1080 - Windows 11 Home - NVIDIA GeForce RTX 3050: $909.00 (Shipped and Sold by Newegg US) MSI Cyborg - 15.6" GeForce RTX 4050 Laptop GPU - Intel i7-13620H - 16GB Memory - 512 GB SSD - Windows 11 Home - Gaming Laptops - 144 Hz IPS (A13VE-218US ): $849.99 (Shipped and Sold by Newegg US) Acer Nitro V - 15.6" GeForce RTX 4050 Laptop GPU - Intel Core i7-13620H - 16GB Memory - 512 GB PCIe SSD - Windows 11 Home - 144 Hz IPS - Gaming Laptop with Acer Gaming Controller (ANV15-51-717H ): $839.99 (Shipped and Sold by Newegg US) Aorus - 15.6" GeForce RTX 4050 Laptop GPU - Intel Core i5-12500H - 8GB Memory - 512 GB PCIe SSD - Windows 11 Home 64-bit - Gaming Laptop - 360 Hz (15 9MF-E2US583SH ): $699.99 (Shipped and Sold by Newegg US) As an Amazon Associate and Newegg Affiliate Partner, we earn from qualifying purchases.
    • I'd say this is hardly news. A GUI wrapper is not exactly some grand accomplishment. Even ClamAV itself is of questionable use. I suppose it lets you check the box on an audit questionnaire that a server has virus protection. But Linux has always been a more difficult target for malware because of the wide variety of distros, library versions, etc. And also the fact that it has a much smaller user base consisting of users who are generally more knowledgeable.
    • Privacy nightmare... And, yes, I know, there's an On/Off toggle. But like Edward Snowden once said : "Where there's an On/Off toggle, there's always a way to turn it on." 😉 Microsoft is also working on letting Copilot tap into your history and credentials so that it can better understand context and perform actions on your behalf
    • Looks like "LoucheBear" should be renamed "DoucheBear". Ignorant ######.
    • The dev is a snowflake for deciding that a project he’s not getting paid to do isn’t worth the attacks? Interesting.
  • Recent Achievements

    • Week One Done
      NeoWeen earned a badge
      Week One Done
    • One Month Later
      BA the Curmudgeon earned a badge
      One Month Later
    • First Post
      Doreen768 earned a badge
      First Post
    • One Month Later
      James_kobe earned a badge
      One Month Later
    • Week One Done
      James_kobe earned a badge
      Week One Done
  • Popular Contributors

    1. 1
      +primortal
      656
    2. 2
      ATLien_0
      253
    3. 3
      Xenon
      167
    4. 4
      neufuse
      146
    5. 5
      +FloatingFatMan
      121
  • Tell a friend

    Love Neowin? Tell a friend!