• 0

Shell Sort Vs Heap Sort Vs Quick Sort


Question

i am having a debate as to which of the sort is more efficient in 2 cases:

when a 2d array of size 50, 100, or 1000 of randomly generated integers

and the same 2d array with all numbers sorted but only 2 indexes where their values have been exchanged.

for these 2 cases which of the 3 sorts seems more efficient.. i am pretty sure the quick sort is the best for the randomly generated array..

but what about the other case... the problem that is bugging me is that when the size is small the difference in the number of comparisons made with quick sort is very similar to the shell sort ...

any suggestions welcomed

:wacko:

Link to comment
https://www.neowin.net/forum/topic/51421-shell-sort-vs-heap-sort-vs-quick-sort/
Share on other sites

9 answers to this question

Recommended Posts

  • 0

In general, quicksort is the fastest known sort method.

However, if the array is presorted, or nearly presorted, then quicksort is no longer the best (the time taken is not much different from random data which is O(n log n)). Shell sort should be quite a bit quicker. Strangely enough, insertion sort and bubble sort - the two algorithms that are taught first 'cause they're so simple - do really well with presorted input (both O(n)). I suspect that in your case ("all numbers sorted but only 2 indexes where their values have been exchanged") insertion sort will be fastest, even faster than shell sort.

Of course I could be wrong ;)

BTW, Heap sort is never any good - don't use it :)

  • 0
  Quote
Big O notation isnt as exact as you are talking about.

Of course it's not exact. On the other hand, for large data sets, any difference in complexity (ie. big-oh) makes a huge difference. Anyway, for the case he's talking about (sorting an almost sorted array) I'm pretty sure shell sort, bubble sort and insertion sort are all O(n). Which makes big-oh notation somewhat useless really. But my guess is that insertion sort will perform the best, due to the simplicity of the algorithm.

  • 0

Also of note: according to my data structures book, shellsort (with Sedgewick's increments) performs better than quicksort when the data set is small (about 100 items or less).

The full results are posted below (the input data is random and the times are in seconds).

post-47-1038033898.gif

  • 0

yeah, what are they

i am doing data structure and i have done discrete mathematics

but what is discrete structures?? :D

from my program it seems like quick sort performed the best in all the cases.

heap sort is disastrous

its time just explodes ...

btw, here is the program which performs these sorts and counts the number of times each sort does a compare and a move ..

#include <stdio.h>
#include <stdlib.h>
#include <memory.h>

#define ARYSIZE 1000
#define ROW 5
#define COL 10
#define SWAP1 19
#define	SWAP2 20
#define NUMTOPRINT 50
#define S "Shell Sort"
#define H "Heap Sort"
#define Q "Quick Sort"

void printSortLine (char *str);
void createAry (int *ary);
void printAry (int *ary, int size);
void shellSort (int list [], int last, int *compare, int *moves);
void printCmpAndMov (int compare, int moves, char *str);
void swap (int *ary);
void heapSort (int list[], int last, int *compare, int *move);
void quickSort (int sortData [], int left, int right, int *compare, int *move);

int main (void)
{
	int ary[ARYSIZE], heapAry [ARYSIZE], quickAry [ARYSIZE], compare = 0, moves = 0;

	createAry (ary);
	memcpy (heapAry, ary, ARYSIZE * sizeof (int));
	memcpy (quickAry, ary, ARYSIZE * sizeof (int));

	printf("Array size:\t%d\n\n", ARYSIZE);

	printSortLine (S);
	compare = moves = 0;
	shellSort (ary, ARYSIZE, &compare, &moves);
	printAry (ary, ARYSIZE);
	printCmpAndMov (compare, moves, "Random list Shell Sort:");
	swap (ary);
	compare = moves = 0;
	shellSort (ary, ARYSIZE, &compare, &moves);
	printCmpAndMov (compare, moves, "Nearly ordered list Shell Sort:");

	printSortLine (H);
	compare = moves = 0;
	heapSort (heapAry, ARYSIZE - 1, &compare, &moves);
	printAry (heapAry, ARYSIZE);
	printCmpAndMov (compare, moves, "Random list Heap Sort:");
	swap (heapAry);
	compare = moves = 0;
	heapSort (heapAry, ARYSIZE - 1, &compare, &moves);
	printCmpAndMov (compare, moves, "Nearly ordered list Heap Sort:");

	printSortLine (Q);
	compare = moves = 0;
	quickSort (quickAry, 0, ARYSIZE - 1, &compare, &moves);
	printAry (quickAry, ARYSIZE);
	printCmpAndMov (compare, moves, "Random list Quick Sort:");
	swap (quickAry);
	compare = moves = 0;
	quickSort (quickAry, 0, ARYSIZE - 1, &compare, &moves);
	printCmpAndMov (compare, moves, "Nearly ordered list Quick Sort:");

	return 0;
}

void printSortLine (char *str)
{
	printf("\nPerforming %s....\n\n", str);
	return;
}

void createAry (int *ary)
{
	int i;

	for (i = 0; i < ARYSIZE; i++)
	{
  ary[i] = rand () % 1001;
	}
	return;
}

void printAry (int *ary, int size)
{
	int i, j;

	if (size <= NUMTOPRINT)
	{
  for (i = 0; i < ROW; i++)
  {
 	 for (j = 0; j < COL; j++)
 	 {
    printf("%4d   ", ary[(i * COL) + j]);
 	 }
 	 printf("\n");
  }
	}
	printf("\n");
	return;
}

void printCmpAndMov (int compare, int moves, char *str)
{
	printf("%-25s\t|compares = %6d  |  moves = %6d|\n", str, compare, moves);
	return;
}

void swap (int *ary)
{
	int temp;

	temp = ary[SWAP1];
	ary [SWAP1] = ary [SWAP2];
	ary [SWAP2] = temp;
	return;
}

void shellSort (int list [], int last, int *compare, int *moves)
{
	int hold, incre, curr, walker;

	incre = last / 2;
	while (incre != 0)
	{
  for (curr = incre; curr <= last; curr++)
  {
 	 hold = list [curr];
 	 *moves += 1;
 	 walker = curr - incre;
 	 while (((*compare)++,walker >= 0 && hold < list [walker]))
 	 {
    list [walker + incre] = list [walker];
    *moves += 1;

    walker = (walker - incre);
 	 }

 	 list [walker + incre] = hold;
 	 *moves += 1;
  }
  incre /= 2;
	}
	return;
}


void heapSort (int list[], int last, int *compare, int *move)
{
	void reheapUp (int heap[], int newElem, int *compare, int *move);
	void reheapDown (int heap[], int current, int last, int *compare, int *move);

	int sorted, holdData, walker;

	for (walker = 1; walker <= last; walker++)
	{
  reheapUp (list, walker, compare, move);
	}

	sorted = last;
	while (sorted > 0)
	{
  holdData = list [0];
  list [0] = list [sorted];
  list [sorted] = holdData;
  *move += 3;
  sorted--;
  reheapDown (list, 0, sorted, compare, move);
	}
	return;
}

void reheapUp (int *heap, int newNode, int *compare, int *move)
{
	int parent, hold;

	if (newNode)
	{
  parent = (newNode - 1)/2;
  if ( *compare += 1, heap [newNode] > heap [parent])
  {
 	 hold = heap[parent];
 	 heap[parent] = heap[newNode];
 	 heap[newNode] = hold;
 	 *move += 3;
 	 reheapUp (heap, parent, compare, move);
  }
	}
	return;
}

void reheapDown (int *heap, int root, int last, int *compare, int *move)
{
	int hold, leftKey, rightKey, largeChildKey, largeChildIndex;

	if ((root * 2 + 1) <= last)
	{
  leftKey = heap [root * 2 + 1];
  *move += 1;

  if ((root * 2 + 2) <= last)
  {
 	 rightKey = heap [root * 2 + 2];
 	 *move += 1;
  }
  else
  {
 	 rightKey = -1;
  }

  if (leftKey > rightKey)
  {
 	 largeChildKey = leftKey;
 	 largeChildIndex = root * 2 + 1;
  }
  else
  {
 	 largeChildKey = rightKey;
 	 largeChildIndex = root * 2 + 2;
  }

  if (*compare += 1, heap[root] < heap [largeChildIndex])
  {
 	 hold = heap [root];
 	 heap [root] = heap [largeChildIndex];
 	 heap [largeChildIndex] = hold;
 	 *move += 3;
 	 reheapDown (heap, largeChildIndex, last, compare, move);
  }
	}
	return;
}

void quickSort (int sortData [], int left, int right, int *compare, int *move)
{
#define MIN_SIZE 16

	void quickInsertion (int sortData[], int first, int last, int *compare, int *move);
	void medianLeft (int sortData[], int left, int right, int *compare, int *move);

	int sortLeft;
	int sortRight;
	int pivot;
	int hold;

	if ( (right - left) > MIN_SIZE)
	{
  medianLeft (sortData, left, right, compare, move);
  pivot = sortData [left];
  *move += 1;
  sortLeft = left + 1;
  sortRight = right;

  while (sortLeft <= sortRight)
  {
 	 while (*compare += 1, sortData [sortLeft] < pivot)
    sortLeft = sortLeft + 1;

 	 while (*compare += 1, sortData[sortRight] >= pivot)
    sortRight = sortRight - 1;

 	 if (sortLeft <= sortRight)
 	 {
    hold = sortData [sortLeft];
    sortData [sortLeft] = sortData [sortRight];
    sortData [sortRight] = hold;
    *move += 3;
    sortLeft = sortLeft + 1;
    sortRight = sortRight - 1;
 	 }
  }

  sortData [left] = sortData [sortLeft - 1];

  sortData [sortLeft - 1] = pivot;

  *move += 2;

  if (left < sortRight)
 	 quickSort (sortData, left, sortRight - 1, compare, move);
  if (sortLeft < right)
 	 quickSort (sortData, sortLeft, right, compare, move);
	}
	else
  quickInsertion (sortData, left, right, compare, move);
	return;
}

void quickInsertion (int sortData[], int first, int last, int *compare, int *move)
{
	int current;
	int hold;
	int walker;

	for (current = first + 1; current <= last; current++)
	{
  hold = sortData [current];
  *move += 1;
  walker = current - 1;
  while (*compare += 1, walker >= first && hold < sortData [walker])
  {
 	 sortData [walker + 1] = sortData [walker];
 	 *move += 1;
 	 walker = walker - 1;
  }
  sortData[walker + 1] = hold;
  *move += 1;
	}
	return;
}

void medianLeft (int sortData[], int left, int right, int *compare, int *move)
{
	int mid;
	int hold;

	mid = (left + right) / 2;

	if (*compare += 1, sortData [left] > sortData [mid])
	{
  hold = sortData [left];
  sortData [left] = sortData [mid];
  sortData [mid] = hold;  
  *move += 3;
	}
	if (*compare += 1, sortData [left] > sortData [right])
	{
  hold = sortData [left];
  sortData [left] = sortData [right];
  sortData [right] = hold;
  *move += 3;
	}
	if (*compare += 1, sortData [mid] > sortData [right])
	{
  hold = sortData [mid];
  sortData [mid] = sortData [right];
  sortData [right] = hold;
  *move += 3;
	}

	hold = sortData [left];
	sortData [left] = sortData [mid];
	sortData [mid] = hold;
	*move += 3;

	return;
}

here is the output file

  Quote
output# 1

Array size:     50

Performing Shell Sort....

 18     41    117    126    150    153    225    258    273    291

292    303    328    329    359    370    404    431    440    442

449    467    474    491    527    590    642    656    660    675

698    699    700    704    705    709    757    788    811    823

862    868    876    885    893    899    931    936    952    993

Random list Shell Sort:         |compares =    372  |  moves =    580|

Nearly ordered list Shell Sort: |compares =    209  |  moves =    417|

Performing Heap Sort....

 18     41    117    126    150    153    225    258    273    291

292    303    328    329    359    370    404    431    440    442

449    467    474    491    527    590    642    656    660    675

698    699    700    704    705    709    757    788    811    823

862    868    876    885    893    899    931    936    952    993

Random list Heap Sort:          |compares =    269  |  moves =   1140|

Nearly ordered list Heap Sort:  |compares =    361  |  moves =   1467|

Performing Quick Sort....

 18     41    117    126    150    153    225    258    273    291

292    303    328    329    359    370    404    431    440    442

449    467    474    491    527    590    642    656    660    675

698    699    700    704    705    709    757    788    811    823

862    868    876    885    893    899    931    936    952    993

Random list Quick Sort:         |compares =    294  |  moves =    306|

Nearly ordered list Quick Sort: |compares =    155  |  moves =    105|

Output# 2

Array size:     100

Performing Shell Sort....

Random list Shell Sort:         |compares =    916  |  moves =   1425|

Nearly ordered list Shell Sort: |compares =    510  |  moves =   1019|

Performing Heap Sort....

Random list Heap Sort:          |compares =    642  |  moves =   2756|

Nearly ordered list Heap Sort:  |compares =    910  |  moves =   3685|

Performing Quick Sort....

Random list Quick Sort:         |compares =    712  |  moves =    731|

Nearly ordered list Quick Sort: |compares =    410  |  moves =    213|

Output# 3

Array size:     1000

Performing Shell Sort....

Random list Shell Sort:         |compares =  15493  |  moves =  23508|

Nearly ordered list Shell Sort: |compares =   8015  |  moves =  16030|

Performing Heap Sort....

Random list Heap Sort:          |compares =   9733  |  moves =  43757|

Nearly ordered list Heap Sort:  |compares =  15325  |  moves =  61177|

Performing Quick Sort....

Random list Quick Sort:         |compares =  10982  |  moves =   9177|

Nearly ordered list Quick Sort: |compares =   7032  |  moves =   2205|

  • 0

quick sort is the fastest when u have huge test cases. (i learnt that half way through a programming competition, bad day that was)

shell sort and merge sort would serve ur purpose the rest of the time.

heapsort, bubble sort, selection sort are practically useless.

thats wat i feel.

This topic is now closed to further replies.
  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Posts

    • About that Trump's mobile 🤣🤣🤣  
    • AliExpress faces EU crackdown, makes promises to fight illegal products by Paul Hill The European Commission has taken two significant actions against the Chinese online marketplace AliExpress under the Digital Services Act (DSA) in a bid to enhance user and consumer safety online. The first action was to get AliExpress to commit to several legally binding commitments to address issues related to advertising and recommender systems. The second action was the publication of preliminary findings which found that AliExpress had breached obligations regarding the spread of illegal products. AliExpress can now respond to the Commission but if the broken rules are confirmed then AliExpress can expect to be fined. The Digital Services Act is a new tool that the EU has to regulate large online platforms. It aims to level the business playing field, protect fundamental rights of users, create a safer digital space, and improve transparency from businesses. AliExpress's pledges: More transparency, safer shopping As part of the pledges made by AliExpress, it will do more to monitor and detect illegal products such as medicines, food supplements, and adult material propagated through hidden links and affiliate programs. To help flag illegal items, AliExpress has promised to improve its notice and action mechanism. Other pledges include enhancements to the internal complaint handling system; more transparency for advertising and recommender systems; better traceability of traders on the platform; and improved data access for researchers. By implementing these rules, the European Commission hopes it can make AliExpress safer for registered and non-registered users by limiting the exposure to illegal content. Deep dive into AliExpress's alleged failures With regards to the preliminary findings, the Commission found that AliExpress had underestimated the risks because it had not allocated enough resources to moderation systems for illegal products. It also found that the company had failed to consistently enforce its penalty policy against those publishing illegal content. The Commission also discovered systemic failures in AliExpress’s proactive content moderation systems that allowed malicious traders to continue to operate or start operating on the platform. AliExpress is designated as a Very Large Online Platform (VLOP) which means it has to meet certain standards set out by the EU. The aforementioned violations are against the quality of operation that the EU expects from VLOPs. The company now has the right to defend itself against the EC’s findings, it can examine the documents and reply in writing, but if the findings are confirmed, AliExpress could face fines and be required to submit an action plan.
    • Author/Neowin... The title is incorrect and misleading... By the official blog post, it's not "indefinitely". There's a clear statement that development continues with a few specific target areas, and a new release date TBD and announced later. If it is later announced to be cancelled or delayed indefinitely, that's another story.
    • I hate Microsoft. My parents almost lost all drive content. As senior citizens they are unable to follow constant "improvements" Microsoft is dropping on its users. My mother's laptop is normally unlocked with a PIN. It is unexplicable for non-It person, that there is some cloud mictosoft account, that has a different password than the Pin and user ID is e-mail, but not necessarily normal Gmail addree, and even if the person knows this email address the password is not the password used for this email account. Just too much of twists. Suddenly her laptop ordered entering "decryption key" before booting. It was miracle we managed to guess email address associated with the PC that was used for Microsoft account. She would had lost everything on the drive. Why are they doing this? Privacy may be important for some people, but data loss is much more important for most of the people.
  • Recent Achievements

    • First Post
      xuxlix earned a badge
      First Post
    • First Post
      Tomek Święcicki earned a badge
      First Post
    • One Year In
      carlitin86 earned a badge
      One Year In
    • Reacting Well
      Peterlll06 earned a badge
      Reacting Well
    • Week One Done
      Peterlll06 earned a badge
      Week One Done
  • Popular Contributors

    1. 1
      +primortal
      674
    2. 2
      ATLien_0
      283
    3. 3
      Michael Scrip
      225
    4. 4
      +FloatingFatMan
      192
    5. 5
      Steven P.
      145
  • Tell a friend

    Love Neowin? Tell a friend!